Wind energy is of increasing interest to wind farm administrators as a clean and renewable energy source。 Accurate wind speed forecasting and effective wind energy simulation can increase the capability of wind power combined with a grid and decrease the operating cost of wind farms。 However, many previous studies have been restricted to wind speed forecasting, ignoring wind energy simulations。 Thus, grid management cannot effectively estimate the power production of wind farms and leads to an increase in the abandonment wind rate in wind farms。
In this study, a wind farm auxiliary management system is developed, which includes two modules: wind speed forecasting and wind energy simulation。 In the wind speed forecasting module, first, a data mining algorithm is used to analyze different features of wind speed time series data in a wind farm。 Subsequently, a feature selection algorithm is used to determine the representative wind speed time series of the wind farm, and it is combined with a data preprocessing method to effectively eliminate the noise of the original wind speed time series。
Second, six hybrid neural network forecasting models based on a modified multi-objective algorithm are established to forecast wind speed。 Finally, they are combined with a model selection strategy to yield the best forecasting value for each time point。 In the wind energy simulation module, using Betz's theory, the physical transformation process of a wind turbine is estimated to determine the range of wind power generation。
中文翻译:
基于模型选择、模糊聚类、多目标算法的风速预测和Betz理论的风能模拟
风能作为一种清洁和可再生能源越来越受到风电场管理者的关注。准确的风速预测和有效的风能模拟可以提高风电并网能力,降低风电场的运营成本。然而,许多先前的研究仅限于风速预测,而忽略了风能模拟。因此,电网管理无法有效估算风电场的发电量,导致风电场弃风率增加。本研究开发了一个风电场辅助管理系统,包括风速预测和风能模拟两个模块。在风速预报模块中,首先采用数据挖掘算法分析风电场风速时序数据的不同特征。随后,利用特征选择算法确定风电场的代表性风速时间序列,并结合数据预处理方法,有效消除原始风速时间序列的噪声。其次,基于改进的多目标算法建立了六个混合神经网络预测模型来预测风速。最后,将它们与模型选择策略相结合,以产生每个时间点的最佳预测值。在风能模拟模块中风电场风速模型,利用贝茨理论,估计风力涡轮机的物理变换过程,以确定风力发电的范围。并结合数据预处理方法,有效消除原始风速时间序列的噪声。其次,基于改进的多目标算法建立了六个混合神经网络预测模型来预测风速。最后,将它们与模型选择策略相结合,以产生每个时间点的最佳预测值。在风能模拟模块中,利用贝茨理论,估计风力涡轮机的物理变换过程,以确定风力发电的范围。并结合数据预处理方法,有效消除原始风速时间序列的噪声。其次风电场风速模型,基于改进的多目标算法建立了六个混合神经网络预测模型来预测风速。最后,将它们与模型选择策略相结合,以产生每个时间点的最佳预测值。在风能模拟模块中,利用贝茨理论,估计风力涡轮机的物理变换过程,以确定风力发电的范围。它们与模型选择策略相结合,以产生每个时间点的最佳预测值。在风能模拟模块中,利用贝茨理论,估计风力涡轮机的物理变换过程,以确定风力发电的范围。它们与模型选择策略相结合,以产生每个时间点的最佳预测值。在风能模拟模块中,利用贝茨理论,估计风力涡轮机的物理变换过程,以确定风力发电的范围。
发表评论